Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 13(1): 2297504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170019

RESUMO

IL-37 is a member of the IL-1 superfamily exerting anti-inflammatory functions in a number of diseases. Extracellular IL-37 triggers the inhibitory receptor IL-1R8 that is known to regulate different NK cell pathways and functional activities including their anti-tumor effect. However, the effect of IL-37 on human NK cell functions is still to be unveiled. This study aimed to investigate the functional effect of IL-37 in human NK cells activated with IL-15. We found that IL-37 enhanced both NK cell cytotoxic activity against different tumor cell lines and cytokines production. These effects were associated with increased phosphorylation of ERK and NF-Kb. The improved NK cell activity was also strictly related to a time-dependent GSK3ß-mediated degradation of IL-1R8. The enhanced activation profile of IL-37 treated NK cells possibly due to IL-1R8 degradation was confirmed by the results with IL-1R8-silenced NK cells. Lastly, in line with these data, through the analysis of the TNM plot database of a large group of patients, IL-37 mRNA expression was found to be significantly lower in colon and skin cancers than in normal tissues. Colon adenocarcinoma and neuroblastoma patients with higher IL-37 mRNA levels had significantly higher overall survival, suggesting that the presence of IL-37 might be considered an independent positive prognostic factor for this tumor. Our results provide novel information on the mechanisms regulating IL-1R8 function in human NK cells, highlighting the IL-37-IL-1R8 axis as a potential new target to improve the anti-tumor immune response.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Citocinas/metabolismo , Adenocarcinoma/tratamento farmacológico , Células Matadoras Naturais/metabolismo , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia
2.
Front Immunol ; 14: 1229341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638041

RESUMO

NK cells represent important effectors that play a major role in innate defences against pathogens and display potent cytolytic activity against tumor cells. An array of surface receptors finely regulate their function and inhibitory checkpoints, such as PD-1, can dampen the immune response inducing an immunosuppressive state. Indeed, PD-1 expression in human NK cells correlated with impaired effector function and tumor immune evasion. Importantly, blockade of the PD-1/PD-L1 axis has been shown to reverse NK cell exhaustion and increase their cytotoxicity. Recently, soluble counterparts of checkpoint receptors, such as soluble PD-1 (sPD-1), are rising high interest due to their biological activity and ability to modulate immune responses. It has been widely demonstrated that sPD-1 can modulate T cell effector functions and tumor growth. Tumor-infiltrating T cells are considered the main source of circulating sPD-1. In addition, recently, also stimulated macrophages have been demonstrated to release sPD-1. However, no data are present on the role of sPD-1 in the context of other innate immune cell subsets and therefore this study is aimed to unveil the effect of sPD-1 on human NK cell function. We produced the recombinant sPD-1 protein and demonstrated that it binds PD-L1 and that its presence results in increased NK cell cytotoxicity. Notably, we also identified a pathway regulating endogenous sPD-1 synthesis and release in human NK cells. Secreted endogenous sPD-1, retained its biological function and could modulate NK cell effector function. Overall, these data reveal a pivotal role of sPD-1 in regulating NK-mediated innate immune responses.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Humanos , Transporte Biológico , Morte Celular , Células Matadoras Naturais
3.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35292515

RESUMO

The inhibitory receptor interleukin-1 receptor 8 (IL-1R8) has been recently recognized to be expressed also by human natural killer (NK) cells. This study was aimed to design and optimize IL-1R8 silencing conditions in human NK cells to precisely establish the activity of such receptor in these cells. Electroporation of freshly isolated or IL-2-cultured NK cells with small interfering RNA (siRNA), resulted in a marked, even though variable, IL-1R8-silencing. Although the expression profile revealed downregulation of most genes involved in several intracellular pathways, some genes related to proliferation, expression of some chemokine receptors, antibody-dependent cell cytotoxicity and cytotoxic activity were upregulated in IL-1R8-silenced NK cells. Furthermore, upon IL-15 activation, the majority of genes involved in NK cell function were upregulated in IL-1R8-siRNA-compared with control-siRNA-transfected NK cells. More importantly, in agreement with these findings, the reduction of IL-1R8 gene expression levels resulted in enhanced expression of NK cell activation markers, production of cytokines and chemokines, and cytotoxic activity against several NK cell targets with different susceptibility to NK-mediated lysis. Similar results were obtained following stimulation with IL-18. All together these data, deeply impacting on the main effector functions of human NK cells, can lead to a better understanding of IL-1R8-mediated regulation on these cells and to the design of new strategies for improving NK cell-mediated anti-tumor responses.


Assuntos
Antineoplásicos , Células Matadoras Naturais , Receptores Tipo I de Interleucina-1/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Citocinas/metabolismo , Humanos , Ativação Linfocitária
4.
Blood Rev ; 54: 100929, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35131139

RESUMO

Chimeric antigen receptor T cells (CAR-T cells) have emerged as a potentially transformative new approach to treating hematological malignancies. Ide-cel, an autologous B cell maturation antigen (BCMA) targeting CAR-T cells, has recently been approved to treat multiple myeloma (MM). Here, we review the main clinical trials of CAR-T cells in MM with the most advanced autologous BCMA-directed ide-cel and cilta-cel, the human CARs orva-cel and CT053, the alternative manufacturing process with P-BCMA-101 and bb21217, the dual CAR GC012F and the allogenic BCMA-directed CAR-T cells ALLO-715. In light of those clinical data, we provide an overview of CAR-T cells' main potential resistance mechanisms, including antigen loss, antigen spreading, anti-CAR antibodies, CAR-T cell exhaustion, and the emergence of a non-permissive microenvironment. Finally, we describe the principal area of research to build the next generation of CAR-T cells, with armored-, gated- or commuting-CARs, CARs associated with knock out of specific genes, and CAR-T cells made from γδT cells or NK cells.


Assuntos
Antígeno de Maturação de Linfócitos B , Mieloma Múltiplo , Antígeno de Maturação de Linfócitos B/genética , Antígeno de Maturação de Linfócitos B/uso terapêutico , Humanos , Imunoterapia Adotiva , Mieloma Múltiplo/patologia , Receptores de Antígenos Quiméricos , Linfócitos T , Microambiente Tumoral
5.
Cancers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069204

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease driven by impaired differentiation of hematopoietic primitive cells toward myeloid lineages (monocytes, granulocytes, red blood cells, platelets), leading to expansion and accumulation of "stem" and/or "progenitor"-like or differentiated leukemic cells in the bone marrow and blood. AML progression alters the bone marrow microenvironment and inhibits hematopoiesis' proper functioning, causing sustained cytopenia and immunodeficiency. This review describes how the AML microenvironment influences lymphoid lineages, particularly T lymphocytes that originate from the thymus and orchestrate adaptive immune response. We focus on the elderly population, which is mainly affected by this pathology. We discuss how a permissive AML microenvironment can alter and even worsen the thymic function, T cells' peripheral homeostasis, phenotype, and functions. Based on the recent findings on the mechanisms supporting that AML induces quantitative and qualitative changes in T cells, we suggest and summarize current immunotherapeutic strategies and challenges to overcome these anomalies to improve the anti-leukemic immune response and the clinical outcome of patients.

6.
Front Immunol ; 11: 133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117280

RESUMO

Innate lymphoid cells (ILCs) are a heterogeneous subset of lymphocytes deeply implicated in the innate immune responses to different pathogens, in lymphoid organogenesis and in the maintenance of tissue homeostasis. Group 3 innate lymphoid cells (ILC3) have been detected in human decidua, where they play a role in the early inflammatory phase favoring implantation and tissue remodeling as well as in the subsequent regulatory phase preventing fetal rejection and supporting neoangiogenesis. A balance between inflammation and immune tolerance is required to maintain pregnancy, thus maternal immune system must be controlled by finely tuned mechanisms. microRNAs (miRNAs) are small non-coding RNAs with important regulatory roles in immune cells, but their function in decidual ILC3 (dILC3) and in decidual NK (dNK) cells is still undefined. Here, we examined the miRNome by microarray in these cells during the first trimester of pregnancy and compared with miRNA profiles of peripheral blood NK (pbNK) cells from pregnant women. We show that distinct miRNA profiles could clearly distinguish dILC3 from NK cells. Correlation analyses revealed that dNK and pbNK miRNome profiles are more similar to each other as compared to dILC3. In particular, we identified 302 and 279 mature miRNAs differentially expressed in dILC3 as compared to dNK and pbNK, respectively. The expression of miR-574-3p and the miR-99b/let-7e/miR-125a miRNA cluster resulted the most increased in dILC3. Remarkably, gene ontology analysis and pathway enrichments of miRNA targets revealed an involvement of these miRNAs in the promotion of anti-inflammatory responses. In agreement to this finding, we also found a higher expression of the anti-inflammatory miR-146a-5p in dILC3 with respect to NK cells. Overall, our data identified specific miRNA signatures distinguishing dILC3, dNK, and pbNK cells. Our data suggest the existence of a tight epigenetic control mediated by miRNAs in dILC3, potentially acting as a brake to prevent exaggerated inflammatory responses and to maintain the immune homeostasis in the early phases of pregnancy.


Assuntos
Decídua/imunologia , Imunidade Inata , Células Matadoras Naturais/imunologia , MicroRNAs/genética , Transcriptoma , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Tolerância Imunológica , Inflamação/genética , MicroRNAs/sangue , Gravidez , Primeiro Trimestre da Gravidez/imunologia , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real
8.
Front Immunol ; 10: 957, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114587

RESUMO

CAR-NK cells may represent a valuable tool, complementary to CAR-T cells, in adoptive immunotherapy of leukemia and solid tumors. However, gene transfer to human NK cells is a challenging task, particularly with non-virus-based techniques. Here, we describe a new procedure allowing efficient electroporation-based transfection of plasmid DNA, including CAR and CCR7 genes, in resting or cytokine-expanded human NK cell populations and NK-92 cell line. This procedure may offer a suitable platform for a safe and effective use of CAR-NK cells in adoptive immunotherapy of cancer.


Assuntos
Transferência Adotiva , Imunidade Celular/genética , Células Matadoras Naturais/imunologia , Leucemia , Receptores CCR7 , Receptores de Antígenos Quiméricos , Transfecção , Humanos , Células Jurkat , Células K562 , Leucemia/imunologia , Leucemia/terapia , Plasmídeos/genética , Plasmídeos/imunologia , Receptores CCR7/genética , Receptores CCR7/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia
9.
Oncoimmunology ; 8(3): 1557030, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723590

RESUMO

Under physiological conditions, PD-1/PD-L1 interactions regulate unwanted over-reactions of immune cells and contribute to maintain peripheral tolerance. However, in tumor microenvironment, this interaction may greatly compromise the immune-mediated anti-tumor activity. PD-1+ NK cells have been detected in high percentage in peripheral blood and ascitic fluid of ovarian carcinoma patients. To acquire information on PD-1 expression and physiology in human NK cells, we analyzed whether PD-1 mRNA and protein are present in resting, surface PD-1-, NK cells from healthy donors. Both different splicing isoforms of PD-1 mRNA and a cytoplasmic pool of PD-1 protein were detected. Similar results were obtained also from both in vitro-activated and tumor-associated NK cells. PD-1 mRNA and protein were higher in CD56dim than in CD56bright NK cells. Confocal microscopy analyses revealed that PD-1 protein is present in virtually all NK cells analyzed. The present findings are compatible with a rapid surface expression of PD-1 in NK cells in response to appropriate, still undefined, stimuli.

10.
Nat Commun ; 9(1): 4492, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374017

RESUMO

Determining the function of uterine lymphocytes is challenging because of the dynamic changes in response to sex hormones and, during pregnancy, to the invading foetal trophoblast cells. Here we provide a genome-wide transcriptome atlas of mouse uterine group 1 innate lymphoid cells (ILCs) at mid-gestation. Tissue-resident Eomes+CD49a+ NK cells (trNK), which resemble human uterine NK cells, are most abundant during early pregnancy, and have gene signatures associated with TGF-ß responses and interactions with trophoblast, epithelial, endothelial, smooth muscle cells, leucocytes and extracellular matrix. Conventional NK cells expand late in gestation and may engage in crosstalk with trNK cells involving IL-18 and IFN-γ. Eomes-CD49a+ ILC1s dominate before puberty, and specifically expand in second pregnancies when the expression of the memory cell marker CXCR6 is upregulated. These results identify trNK cells as the cellular hub of uterine group 1 ILCs, and mark CXCR6+ ILC1s as potential memory cells of pregnancy.


Assuntos
Imunidade Inata , Linfócitos/citologia , Linfócitos/metabolismo , Útero/citologia , Animais , Feminino , Perfilação da Expressão Gênica , Genoma , Humanos , Memória Imunológica , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Gravidez , Receptores CXCR6/metabolismo , Proteínas com Domínio T/metabolismo , Transcriptoma/genética
11.
Cytometry B Clin Cytom ; 92(2): 100-114, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28054442

RESUMO

Natural killer (NK) cells, the most important effectors of the innate lymphoid cells (ILCs), play a fundamental role in tumor immune-surveillance, defense against viruses and, in general, in innate immune responses. NK cell activation is mediated by several activating receptors and co-receptors able to recognize ligands on virus-infected or tumor cells. To prevent healthy cells from auto-aggression, NK cells are provided with strong inhibitory receptors (KIRs and NKG2A) which recognize HLA class I molecules on target cells and, sensing their level of expression, allow killing of targets underexpressing HLA-class I. In vivo, NK cell-mediated anti-tumor function may be suppressed by tumor or tumor-associated cells via inhibitory soluble factors/cytokines or the engagement of the so called immune-check point molecules (e.g., PD1-PDL1). The study of these immune check-points is now offering new important opportunities for the therapy of cancer. In haemopoietic stem cell transplantation, alloreactive NK cells (i.e., those that express KIRs, which do not recognize HLA class I molecules on patient cells), derived from HSC of haploidentical donors, are able to kill leukemia blasts and patient's DC, thus preventing both tumor relapses and graft-versus-host disease. A clear correlation exists between size of the alloreactive NK cell population and clinical outcome. Thus, in view of the recent major advances in cancer therapy based on immuno-mediated mechanisms, the phenotypic analysis of cells and molecules involved in these mechanisms plays an increasingly major role. © 2017 International Clinical Cytometry Society.


Assuntos
Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas , Células Matadoras Naturais/citologia , Leucemia/terapia , Receptores KIR/metabolismo , Animais , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/imunologia , Humanos , Leucemia/imunologia , Fenótipo
12.
J Control Release ; 239: 10-8, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27524282

RESUMO

Human ferritin heavy chain (HFt) has been demonstrated to possess considerable potential for targeted delivery of drugs and diagnostic agents to cancer cells. Here, we report the development of a novel HFt-based genetic construct (HFt-MP-PAS) containing a short peptide linker (MP) between each HFt subunit and an outer shielding polypeptide sequence rich in proline (P), serine (S) and alanine (A) residues (PAS). The peptide linker contains a matrix-metalloproteinases (MMPs) cleavage site that permits the protective PAS shield to be removed by tumor-driven proteolytic cleavage within the tumor microenvironment. For the first time HFt-MP-PAS ability to deliver doxorubicin to cancer cells, subcellular localization, and therapeutic efficacy on a xenogeneic mouse model of a highly refractory to conventional chemotherapeutics type of cancer were evaluated. HFt-MP-PAS-DOXO performance was compared with the novel albumin-based drug delivery system INNO-206, currently in phase III clinical trials. The results of this work provide solid evidence indicating that the stimuli-sensitive, long-circulating HFt-MP-PAS nanocarriers described herein have the potential to be exploited in cancer therapy.


Assuntos
Apoferritinas/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Animais , Antibióticos Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
J Cell Sci ; 129(4): 804-16, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26743087

RESUMO

Disconnection between membrane signalling and actin networks can have catastrophic effects depending on cell size and polarity. The survival motor neuron (SMN) protein is ubiquitously involved in assembly of spliceosomal small nuclear ribonucleoprotein particles. Other SMN functions could, however, affect cellular activities driving asymmetrical cell surface expansions. Genes able to mitigate SMN deficiency operate within pathways in which SMN can act, such as mRNA translation, actin network and endocytosis. Here, we found that SMN accumulates at membrane protrusions during the dynamic rearrangement of the actin filaments. In addition to localization data, we show that SMN interacts with caveolin-1, which mediates anchoring of translation machinery components. Importantly, SMN deficiency depletes the plasma membrane of ribosomes, and this correlates with the failure of fibroblasts to extend membrane protrusions. These findings strongly support a relationship between SMN and membrane dynamics. We propose that SMN could assembly translational platforms associated with and governed by the plasma membrane. This activity could be crucial in cells that have an exacerbated interdependence of membrane remodelling and local protein synthesis.


Assuntos
Membrana Celular/metabolismo , Proteínas do Complexo SMN/fisiologia , Citoesqueleto de Actina/metabolismo , Caveolina 1/metabolismo , Membrana Celular/ultraestrutura , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Células Cultivadas , Humanos , Biossíntese de Proteínas , Transporte Proteico , Ribossomos/metabolismo
14.
Oncotarget ; 6(31): 31039-49, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26427039

RESUMO

Alpha-tocopheryl succinate (αTOS), vitamin K3 (VK3) and vitamin C (ascorbic acid, AA) were previously shown to synergistically promote different death pathways in carcinoma cells, depending on their concentrations and combinations. Similar effects were observed herein in melanoma cells, although αTOS behaved as an antagonist. Interestingly, suboptimal cell death-inducing concentrations (1.5 µM αTOS/20 µM AA/0.2 µM VK3) effectively up-regulated activating Natural Killer (NK) cell ligands, including MICA (the stress-signaling ligand of the NKG2D receptor), and/or the ligands of at least one of the natural cytotoxicity receptors (NKp30, NKp44 and NKp46) in 5/6 melanoma cell lines. Only an isolated MICA down-regulation was seen. HLA class I, HLA class II, ULBP1, ULBP2, ULBP3, Nectin-2, and PVR displayed little, if any, change in expression. Ligand up-regulation resulted in improved lysis by polyclonal NK cells armed with the corresponding activating receptors. These results provide the first evidence for concerted induction of cell death by cell-autonomous and extrinsic (immune) mechanisms. Alarming the immune system much below the cell damage threshold may have evolved as a sensitive readout of neoplastic transformation and oxidative stress. Cocktails of vitamin analogues at slightly supra-physiological dosages may find application as mild complements of melanoma treatment, and in chemoprevention.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Citotoxicidade Imunológica/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Melanoma/tratamento farmacológico , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Vitaminas/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/patologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Vitamina K 3/farmacologia , alfa-Tocoferol/farmacologia
15.
Eur J Immunol ; 45(8): 2356-64, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25982269

RESUMO

Since HLA-E heavy chains accumulate free of their light ß2 -microglobulin (ß2 m) subunit, raising mAbs to folded HLA-E heterodimers has been difficult, and mAb characterization has been controversial. Herein, mAb W6/32 and 5 HLA-E-restricted mAbs (MEM-E/02, MEM-E/07, MEM-E/08, DT9, and 3D12) were tested on denatured, acid-treated, and natively folded (both ß2 m-associated and ß2 m-free) HLA-E molecules. Four distinct conformations were detected, including unusual, partially folded (and yet ß2 m-free) heavy chains reactive with mAb DT9. In contrast with previous studies, epitope mapping and substitution scan on thousands of overlapping peptides printed on microchips revealed that mAbs MEM-E/02, MEM-E/07, and MEM-E/08 bind three distinct α1 and α2 domain epitopes. All three epitopes are linear since they span just 4-6 residues and are "hidden" in folded HLA-E heterodimers. They contain at least one HLA-E-specific residue that cannot be replaced by single substitutions with polymorphic HLA-A, HLA-B, HLA-C, HLA-F, and HLA-G residues. Finally, also the MEM-E/02 and 3D12 epitopes are spatially distinct. In summary, HLA-E-specific residues are dominantly immunogenic, but only when heavy chains are locally unfolded. Consequently, the available mAbs fail to selectively bind conformed HLA-E heterodimers, and HLA-E expression may have been inaccurately assessed in some previous oncology, reproductive immunology, virology, and transplantation studies.


Assuntos
Anticorpos Monoclonais/química , Epitopos/química , Antígenos de Histocompatibilidade Classe I/química , Dobramento de Proteína , Microglobulina beta-2/química , Anticorpos Monoclonais/imunologia , Linhagem Celular , Mapeamento de Epitopos , Epitopos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Microglobulina beta-2/imunologia
16.
Nucleic Acids Res ; 43(12): 5824-37, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25999344

RESUMO

The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection.


Assuntos
Nucleossomos/metabolismo , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Sítios de Ligação , DNA/metabolismo , Histonas/metabolismo , Nucleossomos/química , Ligação Proteica , Estrutura Terciária de Proteína , Sequências Repetitivas de Ácido Nucleico , Telômero/química , Proteína 1 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...